Shape Matching and Object Recognition Using Dissimilarity Measures with Hungarian Algorithm

نویسندگان

  • D. Chitra
  • T. Manigandan
  • N. Devarajan
چکیده

The shape of an object is very important in object recognition. Shape matching is a challenging problem, especially when articulation and deformation of a part occur. These variations may be insignificant for human recognition but often cause a matching algorithm to give results that are inconsistent with our perception. In this paper, we propose an approach to measure similarity between shapes using dissimilarity measures with Hungarian algorithm. In our framework, the measurement of similarity is preceded by (1) forming the shapes from the images using canny edge detection (2) finding correspondence between shapes of the two images using Euclidean distance and cost matrix (3) reducing the cost by using bipartite graph matching with Hungarian algorithm. Corresponding points on two dissimilar shapes will have similar distance, enabling us to solve an optimal assignment problem using the correspondence points. Given the point correspondence, we estimate the transformation that best aligns the two shapes; regularized thin plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching error between corresponding points, together with a term measuring the magnitude of the aligning transform. By using this matching error, we can classify different objects. Results are presented and compared with existing methods using MATLAB for MNIST hand written digits and MPEG7 images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shape Retrieval through Mahalanobis Distance with Shortest Augmenting Path Algorithm

Shape matching and object recognition plays an vital role in the computer vision. The shape matching is difficult in case of the real world images like mpeg database images since the real world images has the internal and external contours. The Mahalanobis distance based shape context approach is proposed to measure similarity between shapes and exploit it for shape retrieval. The process of sh...

متن کامل

A Method of Measuring Shape Similarity between multi-scale objects

Similarity measure is a key issue in evaluation of map generalization, object matching and object recognition. The measures of similarity include shape similarity, location similarity and semantic content similarity (Frank & Ester, 2006). Among these similarity measures, the shape similarity measure is very important because of the easy collecting of the necessary parameters and the well matchi...

متن کامل

Two-dimensional object recognition through two-stage string matching

A two-stage string matching method for the recognition of two-dimensional (2-D) objects is proposed in this work. The first stage is a global cyclic string matching. The second stage is a local matching with local dissimilarity measure computing. The dissimilarity measure function of the input shape and the reference shape are obtained by combining the global matching cost and the local dissimi...

متن کامل

Bayesian Point Set Matching of Scattering Featureswithapplication to Object Recognition

We present a statistical decision approach for the point set matching of unordered feature sets. Both feature sets have associated uncertainties, and the number of elements in each set may be different. Computation of the match likelihood requires a correspondence between feature sets; we solve the correspondence problem in polynomial time using the Hungarian algorithm. We also consider the pro...

متن کامل

Experimental Assessment on Latent Fingerprint Matching Using Affine Transformation

In forensics latent fingerprint identification is critical importance to identifying suspects: latent fingerprints are invisible fingerprint impressions left by fingers on surfaces of objects. The proposed algorithm uses a robust alignment algorithm (mixture contour and Orientation based Descriptor) to align fingerprints and to get the similarity score between fingerprints by considering minuti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009